Using Decision Trees to Improve Case-Based Learning
نویسنده
چکیده
This paper shows that decision trees can be used to improve the performance of case-based learning (CBL) systems. We introduce a performance task for machine learning systems called semi-exible prediction that lies between the classiication task performed by decision tree algorithms and the exible prediction task performed by conceptual clustering systems. In semi-exible prediction, learning should improve prediction of a spe-ciic set of features known a priori rather than a single known feature (as in classii-cation) or an arbitrary set of features (as in conceptual clustering). We describe one such task from natural language processing and present experiments that compare solutions to the problem using decision trees, CBL, and a hybrid approach that combines the two. In the hybrid approach, decision trees are used to specify the features to be included in k-nearest neighbor case retrieval. Results from the experiments show that the hybrid approach outperforms both the decision tree and case-based approaches as well as two case-based systems that incorporate expert knowledge into their case retrieval algorithms. Results clearly indicate that decision trees can be used to improve the performance of CBL systems and do so without reliance on potentially expensive expert knowledge.
منابع مشابه
Selecting Feature Grouping and Decision Tree to Improve Results from the Learning Object Management Model (LOMM)
Recommendation systems, also known as intelligent decision support systems, have been used to support and strengthen the decision making in various areas including education. In order to establish efficient recommendation systems for educational purposes, several specific problems have to be addressed. One such problem is the weak relationship between input features, which causes performance of...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملMaintaining Case-Based Reasoning Systems Using Fuzzy Decision Trees
This paper proposes a methodology of maintaining Case Based Reasoning (CBR) systems by using fuzzy decision tree induction a machine learning technique. The methodology is mainly based on the idea that a large case library can be transformed to a small case library together with a group of adaptation rules, which are generated by fuzzy decision trees. Firstly, an approach to learning feature we...
متن کاملOptimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملINRECA: A Seamlessly Integrated System Based on Inductive Inference and Case-Based Reasoning
This paper focuses on integrating inductive inference and case-based reasoning. We study integration along two dimensions: Integration of case-based methods with methods based on general domain knowledge, and integration of problem solving and incremental learning from experience. In the INRECA system, we perform case-based reasoning as well as TDIDT (TopDown Induction of Decision Trees) classi...
متن کامل